
Maximum Entropy Inverse
Reinforcement Learning (2008)
Paper by Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell,

and Anind K. Dey at CMU

Presentation by Tyler Ingebrand on Oct. 13

Problem - Reward tuning in RL

● Given an MDP with a reward
function, assume we can use RL to
generate an optimal policy

● MDP can model a problem we
want to solve, but how do you
generate a reward function?

● Slight variations in reward function
components and weights lead to
wildly different policies

● Maximize forward velocity
● Reward for every time step the robot

does not fall
● Keep the torso at the desired height
● Keep the torso parallel to the ground
● Minimize torque applied to the joints

Solution - Learn a reward function

● In many cases, we can treat
humans as optimal agents and try
to mimic humans

● If we can learn a reward function
from examples, then we can use
that reward function to generate a
policy using RL

Self-driving cars are a good example. Tuning a
reward function would be nearly impossible. But
we have thousands of hours of data on human

driving behavior.

Formal problem specification

● Given trajectories of an optimal
agent in the form (s0, a0), (s1, a1),
(s2, a2)...

● Output a reward function such that
an optimal agent would reproduce
those actions in those states (as
closely as possible)

● Extremely difficult - there are
infinite possible reward functions
to generate a given policy An example trajectory for a self-driving car

Prior work
● Learning agents for uncertain environments (1998)

○ Original problem definition - Reward function from expertise
● Apprenticeship learning via inverse reinforcement learning (2004)

○ Assumes the reward function is a linear combination of some features with some
weights

○ Chooses the weights such that the difference in value between the expert policy
and the current policy is greatest; then re-optimizes the policy. This makes the
policy get iteratively closer to the expert

● Maximum margin planning (2006)
○ Similar to the above but applies gradient descent

● Bayesian Inverse Reinforcement Learning (2007)
○ Uses hill climbing over reward functions
○ Has to train a policy via value iteration every iteration - very slow

Prior work limitations

● Fails when the expert agent is not
optimal, which is typical in human
generated data, because it leads to
ambiguity on which reward function is
optimal

● Many policies may represent the
same trajectories generated via the
expert. There is no good way to
disambiguate previously.

● Trajectories that branch earlier are
favored

Given 3 paths from A to B, we should consider
each path separately in terms of total reward.
Prior work looks at the action taken at each
step, and thus fails by favoring paths that

branch soonest.

Principal of maximum entropy

● Given prior information about a distribution,
the best approximation is the distribution
matching the data with the largest uncertainty

● This distribution makes the least assumptions
about the true distribution

● Application of Occam’s Razor:
○ “The simpler explanation is to be

preferred”
● Another interpretation is to not overfit the

approximate distributribution to the data

https://www.britannica.com/topic/explanation

Main Contribution - Apply the principle of maximum entropy to inverse RL

Optimal reward
function weights Expert Trajectory

(Zeta)

Probability of

Given the reward
function weights and
Transition function

Main Contribution - Solve via gradient descent

Gradient of the
loss

How often we visit
that state following
the reward function

Features of that
state

Sum over all states

Expected feature
visitation of the
current reward
function

Minimize difference between expert feature visitation and our feature visitation

Expert Provided
feature visitation

Main Contribution - Solve via gradient descent

Expert Provided
feature visitation

Expected feature
visitation of the
current reward
function

Why use the difference in feature visitation rather than the difference in state
visitation? State visitation is subject to the transition function, whereas feature
visitation is the “Goal” of the agent. Even with “unlucky” transitions, the agent
should return to the correct features.

Main Contribution - Solve via gradient descent

Known
Known

Unknown

Implementation details
Computes probability
mass of each branch

Computes action
probabilities for each state

Given initial states and
action probabilities,
calculates the probabilities
of all states at all timesteps

Sum the state probabilities
over all timesteps to get
state visitation

Results - Taxi data from Pittsburgh

Results Given a goal from the expert
dataset, what percent of the
route follows the expert?

What percent of those paths
are 90% the same as an
expert?

How likely are expert paths
in their model?

Results - Costs of actions (in seconds)

Results - Using the model to predict destinations

Strengths Limitations

● Learns the most general reward
function to explain the expert
trajectories

● Can handle sub-optimal expert
trajectories

● Handles stochastic
environments

● Iterates over all states and
actions, therefore only works on
discrete problems

● Can only produce action
probabilities for visited states -
cannot produce a policy for
unseen states

● Requires human expertise -
How to get this for robotics?

Future work

● Continuous Spaces
● Extrapolate to unseen states
● More example datasets to test

on - Driving dataset alone is not
very convincing

● Generate a dense reward
function from a sparse reward
function

Extended readings

● A Survey of Inverse Reinforcement Learning: Challenges, Methods and
Progress
○ Provides an overview of IRL methods as of 2020

● Maximum Entropy Deep Inverse Reinforcement Learning
○ Extends this work to neural networks

● Maximum entropy inverse reinforcement learning in continuous state spaces
with path integrals
○ Extends this work to continuous state spaces

Summary

● Problem: Reward tuning is hard and boring
● Solution: Learn reward functions from

experts
● Prior work cannot handle sub-optimal

experts
● Improve reward function approximation by

using the principle of maximum entropy
● Key Takeaway - Principle of maximum

entropy can improve many solutions that
involve uncertainty

