
Maximum Entropy Inverse 
Reinforcement Learning (2008)
Paper by Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, 

and Anind K. Dey at CMU

Presentation by Tyler Ingebrand on Oct. 13



Problem - Reward tuning in RL

● Given an MDP with a reward 
function, assume we can use RL to 
generate an optimal policy

● MDP can model a problem we 
want to solve, but how do you 
generate a reward function?

● Slight variations in reward function 
components and weights lead to 
wildly different policies

● Maximize forward velocity
● Reward for every time step the robot 

does not fall
● Keep the torso at the desired height
● Keep the torso parallel to the ground
● Minimize torque applied to the joints



Solution - Learn a reward function

● In many cases, we can treat 
humans as optimal agents and try 
to mimic humans

● If we can learn a reward function 
from examples, then we can use 
that reward function to generate a 
policy using RL

Self-driving cars are a good example. Tuning a 
reward function would be nearly impossible. But 
we have thousands of hours  of data on human 

driving behavior. 



Formal problem specification

● Given trajectories of an optimal 
agent in the form (s0, a0), (s1, a1), 
(s2, a2)...

● Output a reward function such that 
an optimal agent would reproduce 
those actions in those states (as 
closely as possible)

● Extremely difficult - there are 
infinite possible reward functions 
to generate a given policy An example trajectory for a self-driving car



Prior work
● Learning agents for uncertain environments (1998)

○ Original problem definition - Reward function from expertise
● Apprenticeship learning via inverse reinforcement learning (2004)

○ Assumes the reward function is a linear combination of some features with some 
weights

○ Chooses the weights such that the difference in value between the expert policy 
and the current policy is greatest; then re-optimizes the policy. This makes the 
policy get iteratively closer to the expert

● Maximum margin planning (2006)
○ Similar to the above but applies gradient descent

● Bayesian Inverse Reinforcement Learning (2007)
○ Uses hill climbing over reward functions
○ Has to train a policy via value iteration every iteration - very slow



Prior work limitations

● Fails when the expert agent is not 
optimal, which is typical in human 
generated data, because it leads to 
ambiguity on which reward function is 
optimal 

● Many policies may represent the 
same trajectories generated via the 
expert. There is no good way to 
disambiguate previously.

● Trajectories that branch earlier are 
favored

Given 3 paths from A to B, we should consider 
each path separately in terms of total reward. 
Prior work looks at the action taken at each 
step, and thus fails by favoring paths that 

branch soonest.



Principal of maximum entropy

● Given prior information about a distribution, 
the best approximation is the distribution 
matching the data with the largest uncertainty

● This distribution makes the least assumptions 
about the true distribution

● Application of Occam’s Razor:
○  “The simpler explanation is to be 

preferred”
● Another interpretation is to not overfit the 

approximate distributribution to the data

https://www.britannica.com/topic/explanation


Main Contribution - Apply the principle of maximum entropy to inverse RL

Optimal reward 
function weights Expert Trajectory 

(Zeta)

Probability of

Given the reward 
function weights and 
Transition function



Main Contribution - Solve via gradient descent

Gradient of the 
loss

How often we visit 
that state following 
the reward function

Features of that 
state

Sum over all states

Expected feature 
visitation of the 
current reward 
function

Minimize difference between expert feature visitation and our feature visitation

Expert Provided 
feature visitation



Main Contribution - Solve via gradient descent

Expert Provided 
feature visitation

Expected feature 
visitation of the 
current reward 
function

Why use the difference in feature visitation rather than the difference in state 
visitation? State visitation is subject to the transition function, whereas feature 
visitation is the “Goal” of the agent. Even with “unlucky” transitions, the agent 
should return to the correct features.



Main Contribution - Solve via gradient descent

Known
Known

Unknown



Implementation details
Computes probability 
mass of each branch

Computes action 
probabilities for each state

Given initial states and 
action probabilities, 
calculates the probabilities 
of all states at all timesteps

Sum the state probabilities 
over all timesteps to get 
state visitation



Results - Taxi data from Pittsburgh



Results Given a goal from the expert 
dataset, what percent of the 
route follows the expert?

What percent of those paths 
are 90% the same as an 
expert?

How likely are expert paths 
in their model? 



Results - Costs of actions (in seconds) 



Results - Using the model to predict destinations



Strengths Limitations

● Learns the most general reward 
function to explain the expert 
trajectories

● Can handle sub-optimal expert 
trajectories

● Handles stochastic 
environments 

● Iterates over all states and 
actions, therefore only works on 
discrete problems

● Can only produce action 
probabilities for visited states - 
cannot produce a policy for 
unseen states

● Requires human expertise - 
How to get this for robotics?



Future work

● Continuous Spaces
● Extrapolate to unseen states
● More example datasets to test 

on - Driving dataset alone is not 
very convincing

● Generate a dense reward 
function from a sparse reward 
function



Extended readings

● A Survey of Inverse Reinforcement Learning: Challenges, Methods and 
Progress
○ Provides an overview of IRL methods as of 2020

● Maximum Entropy Deep Inverse Reinforcement Learning
○ Extends this work to neural networks

● Maximum entropy inverse reinforcement learning in continuous state spaces 
with path integrals
○ Extends this work to continuous state spaces



Summary

● Problem: Reward tuning is hard and boring
● Solution: Learn reward functions from 

experts
● Prior work cannot handle sub-optimal 

experts
● Improve reward function approximation by 

using the principle of maximum entropy
● Key Takeaway - Principle of maximum 

entropy can improve many solutions that 
involve uncertainty


